Grstats Forum
AUEB Stats Seminars 17/12/2020:  Optimal data driven policies under constrained multi-armed bandit observations by Odysseas Kanavetas Forumgrstats
Grstats Forum
Θέλετε να αντιδράσετε στο μήνυμα; Φτιάξτε έναν λογαριασμό και συνδεθείτε για να συνεχίσετε.

AUEB Stats Seminars 17/12/2020: Optimal data driven policies under constrained multi-armed bandit observations by Odysseas Kanavetas

Πήγαινε κάτω

AUEB Stats Seminars 17/12/2020:  Optimal data driven policies under constrained multi-armed bandit observations by Odysseas Kanavetas Empty AUEB Stats Seminars 17/12/2020: Optimal data driven policies under constrained multi-armed bandit observations by Odysseas Kanavetas

Δημοσίευση από grstats Την / Το Τετ 11 Νοε 2020 - 14:46

ΚΥΚΛΟΣ ΣΕΜΙΝΑΡΙΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΔΕΚΕΜΒΡΙΟΣ 2020

AUEB Stats Seminars 17/12/2020:  Optimal data driven policies under constrained multi-armed bandit observations by Odysseas Kanavetas Kanave10


Odysseas Kanavetas
Leiden University, Mathematical Institute

Optimal data driven policies under constrained multi-armed bandit observations

ΠΕΜΠΤΗ 17/12/2020
12:30

Σύνδεσμος Google Meeting: meet.google.com/usq-firh-fhs

ΠΕΡΙΛΗΨΗ
After a brief review of the multi-armed bandit (MAB) problem and its online machine learning applications, we present our work on the model with side constraints. The constraints represent circumstances in which bandit activations are restricted by the availability of certain resources that are replenished at a constant rate.
We consider the class of feasible uniformly fast (f-UF) convergent policies, that satisfy sample path wise the constraints. We first establish a necessary asymptotic lower bound for the rate of increase of the regret (i.e., loss due to the need to estimate unknown parameters) function of f-UF policies. Then, under pertinent conditions, we establish the existence of asymptotically optimal policies by constructing a class of f-UF policies that achieve this lower bound.
We provide the explicit form of such policies for cases in which the unknown distributions are a) Normal with unknown means and known variances, b) Normal distributions with unknown means and unknown variances and c) arbitrary discrete distributions with finite support.

Fb event: https://www.facebook.com/events/669031950700971
grstats
grstats

Posts : 837
Join date : 21/10/2009

http://stat-athens.aueb.gr/~grstats/

Επιστροφή στην κορυφή Πήγαινε κάτω

Επιστροφή στην κορυφή


 
Δικαιώματα σας στην κατηγορία αυτή
Δεν μπορείτε να απαντήσετε στα Θέματα αυτής της Δ.Συζήτησης