Re: AUEB INFORMATICS SEMINARS - 21/6/2016: A Bayesian nonparametric model for sparse dynamic networks
Tue 21 Jun 2016 - 12:13
Reminder for today.
AUEB INFORMATICS SEMINARS - 21/6/2016: A Bayesian nonparametric model for sparse dynamic networks
Mon 6 Jun 2016 - 11:44
Ανακοίνωση σεμιναρίου:
Τρίτη *21 Ιουνίου, ώρα 14:00 στην αίθουσα 709* (στο κτήριο της Ευελπίδων του Οικονομικού Πανεπιστημίου Αθηνών)
θα δοθεί ομιλία από την Κωνσταντίνα Πάλλα (http://mlg.eng.cam.ac.uk/konstantina/)
η οποία εργάζεται ως ερευνήτρια στο Τμήμα Στατιστικής του Πανεπιστημίου της Οξφόρδης.
Πληροφορίες για το θέμα του σεμιναρίου δίνονται παρακάτω.
Σημαντική σημείωση: *Η ομιλία θα ξεκινήσει ακριβώς στις 14:00 (και όχι 14:15)*
---------------------------------------------------------------
Title: A Bayesian nonparametric model for sparse dynamic networks.
Abstract:
We propose a Bayesian nonparametric prior for time-varying networks. To
each node of the network is associated a positive parameter, modeling the
sociability of that node. Sociabilities are assumed to evolve over time,
and are modeled via a dynamic point process model. The model is able to
(a) capture smooth evolution of the interaction between nodes, allowing edges
to appear/disappear over time (b) capture long term evolution of the
sociabilities of the nodes (c) and yield sparse graphs, where the number
of edges grows subquadratically with the number of nodes. The evolution of the
sociabilities is described by a tractable time-varying gamma process. We provide
some theoretical insights into the model and apply it to three real world datasets.
Konstantina Palla
http://mlg.eng.cam.ac.uk/konstantina/
Τρίτη *21 Ιουνίου, ώρα 14:00 στην αίθουσα 709* (στο κτήριο της Ευελπίδων του Οικονομικού Πανεπιστημίου Αθηνών)
θα δοθεί ομιλία από την Κωνσταντίνα Πάλλα (http://mlg.eng.cam.ac.uk/konstantina/)
η οποία εργάζεται ως ερευνήτρια στο Τμήμα Στατιστικής του Πανεπιστημίου της Οξφόρδης.
Πληροφορίες για το θέμα του σεμιναρίου δίνονται παρακάτω.
Σημαντική σημείωση: *Η ομιλία θα ξεκινήσει ακριβώς στις 14:00 (και όχι 14:15)*
---------------------------------------------------------------
Title: A Bayesian nonparametric model for sparse dynamic networks.
Abstract:
We propose a Bayesian nonparametric prior for time-varying networks. To
each node of the network is associated a positive parameter, modeling the
sociability of that node. Sociabilities are assumed to evolve over time,
and are modeled via a dynamic point process model. The model is able to
(a) capture smooth evolution of the interaction between nodes, allowing edges
to appear/disappear over time (b) capture long term evolution of the
sociabilities of the nodes (c) and yield sparse graphs, where the number
of edges grows subquadratically with the number of nodes. The evolution of the
sociabilities is described by a tractable time-varying gamma process. We provide
some theoretical insights into the model and apply it to three real world datasets.
Konstantina Palla
http://mlg.eng.cam.ac.uk/konstantina/
- AUEB SEMINARS - 26/10/2016: Criteria for Bayesian model choice and implications on the n<<p problem
- AUEB SEMINARS - 22/6/2016: Scalable Bayesian variable selection and model averaging under block orthogonal design
- AUEB Stats Seminars 8/10/2021: From here to infinity - bridging finite and Bayesian nonparametric mixture models in model-based clustering by Sylvia Frühwirth-Schnatter (WU Vienna University of Economics and Busin
- AUEB STATS SEMINARS 3/10/2018: A dynamic binomial model with application to the propensity to use tax amnesty by Jonas Andersson
- AUEB SEMINARS - 19/6/2015: Bayesian Model Selection Under Heredity Constraints
Permissions in this forum:
You cannot reply to topics in this forum
|
|