Σεμινάριο Πανεπιστημίου Ιωαννίνων: On the identifiability of Bayesian Factor Analytic models - Π. Παπασταμούλης
Tue 1 Jun 2021 - 8:33
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ
ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ
Εβδομαδιαίο Σεμινάριο
On the identifiability of Bayesian Factor Analytic models
Παναγιώτης Παπασταμούλης
Οικονομικό Πανεπιστημίο Αθηνών
A well known identifiability issue in factor analytic models is the invariance with respect to orthogonal transformations. This problem burdens the inference under a Bayesian setup, where Markov chain Monte Carlo (MCMC) methods are used to generate samples from the posterior distribution. We introduce a postprocessing scheme in order to deal with rotation, sign and permutation invariance of the MCMC sample. The exact version of the contributed algorithm requires to solve 2q assignment problems per (retained) MCMC iteration, where q denotes the number of factors of the fitted model. For large numbers of factors two approximate schemes based on simulated annealing are also discussed. We demonstrate that the proposed method leads to interpretable posterior distributions using synthetic and publicly available data from typical factor analytic models as well as mixtures of factor analyzers.
preprint: https://arxiv.org/abs/2004.05105
Τετάρτη 02 Ιουνίου 2021, 15:00 Η ομιλία θα γίνει μέσω της πλατφόρμας MSTEAMS
ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ
Εβδομαδιαίο Σεμινάριο
On the identifiability of Bayesian Factor Analytic models
Παναγιώτης Παπασταμούλης
Οικονομικό Πανεπιστημίο Αθηνών
A well known identifiability issue in factor analytic models is the invariance with respect to orthogonal transformations. This problem burdens the inference under a Bayesian setup, where Markov chain Monte Carlo (MCMC) methods are used to generate samples from the posterior distribution. We introduce a postprocessing scheme in order to deal with rotation, sign and permutation invariance of the MCMC sample. The exact version of the contributed algorithm requires to solve 2q assignment problems per (retained) MCMC iteration, where q denotes the number of factors of the fitted model. For large numbers of factors two approximate schemes based on simulated annealing are also discussed. We demonstrate that the proposed method leads to interpretable posterior distributions using synthetic and publicly available data from typical factor analytic models as well as mixtures of factor analyzers.
preprint: https://arxiv.org/abs/2004.05105
Τετάρτη 02 Ιουνίου 2021, 15:00 Η ομιλία θα γίνει μέσω της πλατφόρμας MSTEAMS
- PhD opportunity at UEA: NETWORK META-ANALYSIS OF DIAGNOSTIC ACCURACY STUDIES VIA FACTOR COPULA MIXED MODELS
- AUEB Stats Seminars 30/9/2021: Bi-factor and second-order copula models for item response data by A. Nikoloulopoulos (University of East Anglia, UK)
- 1ο Σεμινάριο Στατιστικής/Οικονομετρίας/Μηχανικής μάθησης του τμήματος Οικονομικών Επιστημών του Πανεπιστημίου Κρήτης 18/11/2020: Στέλιος Αρβανίτης
- Σεμινάριο Τμήματος Στατιστικής και Ασφαλιστικής Επιστήμης, Πανεπιστήμιο Πειραιώς: "Clustering multivariate data using finite mixture models"
- AUEB SEMINARS - 6/6/2014: Bayesian spatio-temporal epidemic models with applications to sheep pox
Permissions in this forum:
You cannot reply to topics in this forum