AUEB Stats Seminars 24/6/2021: Nonparametric and high-dimensional functional graphical models by E. Solea
Thu 24 Jun 2021 - 11:47
Nonparametric and high-dimensional functional graphical models
Eftychia Solea, CREST, ENSAI, Rennes, France
ΠΕΜΠΤΗ 24/6/2021, 12:30
link: https://bit.ly/3opz2kK
ΠΕΡΙΛΗΨΗ
We consider the problem of constructing nonparametric undirected graphical models for high- dimensional functional data. Most existing statistical methods in this context assume either a Gaussian distribution on the vertices or linear conditional means. In this article we provide a more flexible model which relaxes the linearity assumption by replacing it by an arbitrary additive form. The use of functional principal components offers an estimation strategy that uses a group lasso penalty to estimate the relevant edges of the graph. We establish concentration inequalities for the resulting estimators allowing both the number of predictors and the number of functional principal components to diverge to infinity with increasing sample size. We also investigate the empirical performance of our method through simulation studies and a real data application.
Ημερομηνία Εκδήλωσης: Πέμπτη, Ιούνιος 24, 2021 - 12:30
- AUEB Stats Seminars 8/10/2021: From here to infinity - bridging finite and Bayesian nonparametric mixture models in model-based clustering by Sylvia Frühwirth-Schnatter (WU Vienna University of Economics and Busin
- AUEB Stats Seminars 24/3/2021: Improved estimation of partially-specified models by I. Kosmidis (Univ. of Warwick) από grstats
- AUEB STATS SEMINARS 27/4/2017: Existence of the maximum likelihood estimate in discrete graphical models
- AUEB STATS SEMINARS 21/2/2019: High-Dimensional Macroeconomic Forecasting Using Message Passing Algorithms by Dimitris Korobilis
- AUEB STATS SEMINARS 23/11/2017: High-dimensional model building for Spatial Regression by Taps Maiti (Michigan State University)
Permissions in this forum:
You cannot reply to topics in this forum