AUEB STATS SEMINARS 12/12/2018: A new approach to Bayesian image analysis by John Kornak
Wed 5 Dec 2018 - 23:56
AUEB STATISTICS SEMINAR SERIES DECEMBER 2018
John Kornak
University of California
A new approach to Bayesian image analysis
TUESDAY 12/12/2018
13:00 sharp
ROOM T101,
NEW AUEB BUILDING, (TROIAS 2)
ABSTRACT
Bayesian image analysis can improve image quality, by balancing a priori expectations of image characteristics, with a model for the noise process via Bayes Theorem. We will give a reformulation of the conventional Bayesian image analysis paradigm in Fourier space, i.e. the prior and likelihood are given in terms of spatial frequency signals. By specifying the Bayesian model in Fourier space, spatially correlated priors, that are relatively difficult to model and compute in conventional image space, can be efficiently modeled as a set of independent processes across Fourier space; the priors in Fourier space are modeled as independent, but tied together by defining a “parameter function” over Fourier space for the values of the pdf parameters. The originally inter-correlated and high-dimensional problem in image space is thereby broken down into a series of (trivially parallelizable) independent one-dimensional problems. We will describe the Bayesian image analysis in Fourier space (BIFS) modeling approach, illustrate its’ computational efficiency and speed, and demonstrate useful properties of isotropy and resolution invariance to model specification which are difficult to obtain in the conventional formulation. We will describe specific applications in medical imaging, and contrast with results based on more conventional Bayesian image analysis models. Finally, we will showcase a Python package that is under development to make the approach widely accessible.
- AUEB-Stats Seminars 27/9/2024: "Modeling longitudinal trajectories of neuropsychological and neuroimaging brain changes", by John Kornak (Professor, University of California, San Francisco)
- AUEB STATS SEMINARS 14/6/2018: Bayesian identification of differentially expressed transcripts using RNA-Seq data by Panagiotis Papastamoulis
- AUEB STATS SEMINARS 21/3/2018: Learning Markov Equivalence Classes of Directed Acyclic Graphs: an Objective Bayes Approach by Prof. Guido Consonni
- AUEB STATS SEMINARS 8/11/2018: Bayesian model selection for exponential random graph models via adjusted pseudolikelihoods by Lampros Bouranis
- AUEB STATS SEMINARS 29/11/2018: Pivotal methods for Bayesian mixture models and classical k-means algorithm initialization by Leonardo Egidi
Permissions in this forum:
You cannot reply to topics in this forum